ORGANIC LETTERS

2008 Vol. 10, No. 21 4887-4889

Stereoselective Synthesis of 3-Alkylideneoxindoles by **Palladium-Catalyzed Cyclization** Reaction of 2-(Alkynyl)aryl Isocyanates with Organoboron Reagents

Tomoya Miura, Takeharu Toyoshima, Yusuke Takahashi, and Masahiro Murakami*

Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan

murakami@sbchem.kyoto-u.ac.jp

Received August 25, 2008

A palladium(0)/monophosphine catalyst promotes a cyclization reaction of 2-(alkynyl)aryl isocyanates with organoboron reagents to produce stereodefined 3-alkylideneoxindoles. The alkynyl and isocyanato groups undergo oxidative cyclization with Pd(0) to form an oxapalladacycle intermediate. Subsequent transmetalation and reductive elimination afford the product.

The 3-alkylideneoxindole ring system represents a key substructure found in a number of biologically active compounds. In addition, 3-alkylideneoxindoles are valuable intermediates in the synthesis of naturally occurring alkaloids² and drug candidates.³ Although Knoevenagel condensation between oxindole derivatives and carbonyl compounds

(1) (a) Sun, L.; Tran, N.; Tang, F.; App, H.; Hirth, P.; McMahon, G.; Tang, C. J. Med. Chem. 1998, 41, 2588. (b) Vieth, M.; Cummins, D. J. J. Med. Chem. 2000, 43, 3020. (c) Woodard, C. L.; Li, Z.; Kathcart, A. K.; Terrell, J.; Gerena, L.; Lopez-Sanchez, M.; Kyle, D. E.; Bhattacharjee, A. K.; Nichols, D. A.; Ellis, W.; Prigge, S. T.; Geyer, J. A.; Waters, N. C. *J. Med. Chem.* **2003**, *46*, 3877. (d) Pandit, B.; Sun, Y.; Chen, P.; Sackett, D. L.; Hu, Z.; Rich, W.; Li, C.; Lewis, A.; Schaefer, K.; Li, P.-K. Bioorg. Med. Chem. 2006, 14, 6492. (e) Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Kunkel, M. W. J. Med. Chem. 2006, 49, 6922.

is one of the most reliable procedures for their preparation, a mixture of both stereoisomers is often formed with regard to the resulting carbon-carbon double bond. 1a,2a-c Therefore, the development of a method for the stereoselective synthesis of these important molecules is needed, and several transition-metal-mediated procedures have been developed.⁴ We have previously described the rhodium(I)-catalyzed cyclization reaction of 2-(alkynyl)aryl isocyanates with aryl- and alkenylboronic acids.⁵ This reaction permits the sp² carbon

^{(2) (}a) Carroll, W. A.; Grieco, P. A. J. Am. Chem. Soc. 1993, 115, 1164. (b) Fukuyama, T.; Liu, G. J. Am. Chem. Soc. 1996, 118, 7426. (c) Lin, S.; Yang, Z.-Q.; Kwok, B. H. B.; Koldoskiy, M.; Crews, C. M.; Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 6347. (d) Trost, B. M.; Cramer, N.; Bernsmann, H. J. Am. Chem. Soc. 2007, 129, 3086.

⁽³⁾ Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Tomita, Y.; Parrish, D. A.; Deschamps, J. R.; Wang, S. J. Am. Chem. Soc. 2005, 127, 10130.

⁽⁴⁾ For recent examples of the synthesis of 3-alkylideneoxindoles with catalysis of transition metals, see: (a) Kamijo, S.; Šasaki, Y.; Kanazawa, C.; Schüβeler, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2005, 44, 7718. (b) Yanada, R.; Obika, S.; Inokuma, T.; Yanada, K.; Yamashita, M.; Ohta, S.; Takemoto, Y. *J. Org. Chem.* **2005**, *70*, 6972. (c) Cheung, W. S.; Patch, R. J.; Player, M. R. J. Org. Chem. 2005, 70, 3741. (d) Shintani, R.; Yamagami, T.; Hayashi, T. Org. Lett. 2006, 8, 4799. (e) Pinto, A.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 3291. (f) Tang, S.; Yu, Q.-F.; Peng, P.; Li, J.-H.; Zhong, P.; Tang, R.-Y. Org. Lett. 2007, 9, 3413. (g) Tang, S.; Peng, P.; Pi, S.-F.; Liang, Y.; Wang, N.-X.; Li, J.-H. Org. Lett. 2008, 10, 1179. (h) Miura, T.; Takahashi, Y.; Murakami, M. Org. Lett. 2008, 10, 1743. (i) Tang, S.; Peng, P.; Wang, Z.-Q.; Tang, B.-X.; Deng, C.-L.; Li, J.-H.; Zhong, P.; Wang, N.-X. Org. Lett. 2008, 10, 1875.
(5) Miura, T.; Takahashi, Y.; Murakami, M. Org. Lett. 2007, 9, 5075.

on boron to be transferred regioselectively onto the alkyne moiety to produce arylated and alkenylated 3-alkylideneoxindoles in a stereoselective manner. In this paper, we report that palladium(0) catalysts promote an analogous type of cyclization reaction with greater efficiency. The palladium-catalyzed system not only expands the substrate scope for the substituents at the alkyne termini but also permits the installation of sp³ and sp carbons on the exocyclic double bond.

To compare the Rh- and Pd-catalyzed reactions, we examined the arylative cyclization reaction of 2-(2-phenylethynyl)phenyl isocyanate (**1a**). When **1a** was treated with 4-methylphenylboronic acid (**2a**) in the presence of [Rh-(OH)(cod)]₂ (5 mol % of Rh) at 50 °C for 12 h, 3-alkylideneoxindole **3aa** was obtained in only 13% yield.⁵ Remarkably, the use of readily available Pd(PPh₃)₄ (5 mol % of Pd) provided **3aa** in 99% yield as a single stereoisomer (*Z/E* = >20:1,⁶ eq 1) at 50 °C. No base is required to promote the catalytic cycle unlike the Suzuki—Miyaura cross-coupling reaction.⁷ Palladium(II) catalysts such as PdCl₂(PPh₃)₂, Pd(OAc)₂, and Pd(OAc)₂/dppe failed to promote the present reaction or gave a complex mixture of products.^{8,9} We propose that the reaction proceeds through the pathway outlined in Scheme 1. Substrate **1a** binds to a palladium(0)

Scheme 1. Proposed Reaction Pathway

catalyst to generate the chelate complex $\bf A$, which then forms the oxapalladacycle $\bf B$ by oxidative cyclization. Subsequent transmetalation of $\bf B$ with $\bf 2a$ produces the alkenylpalladium

species **C**.¹⁰ Reductive elimination from **C** then affords arylated intermediate **D** and regenerates the palladium(0) catalyst.¹¹ Protonolysis of **D** occurs during aqueous workup to give **3aa**.

The results obtained with various combinations of 2-(alkynyl)aryl isocyanates 1 and organoboronic acids 2 are listed in Table 1. Not only arylboronic acids 2b-2d but also

Table 1. Pd(0)-Catalyzed Cyclization Reaction of 1 with 2

entry	1	\mathbb{R}^1	2	\mathbb{R}^2	X	$t \\ (^{\circ}\mathrm{C})$	3	yield $(\%)^a$
1	1a	Ph	2 b	4-CF ₃ C ₆ H ₄	1.5	80	3ab	89 ^b
2	1a	Ph	2c	$4\text{-MeOC}_6\mathrm{H}_4$	1.5	50	3ac	99
3	1a	Ph	2d	2-MeC_6H_4	1.5	50	3ad	87
4	1a	Ph	2e	3-thienyl	1.5	rt	3ae	91
5	1a	Ph	2f	β -styryl	1.5	50	3af	97
6	1a	Ph	2g	(E)-pentenyl	2.0	rt	3ag	99
7	1a	Ph	2h	cyclopropyl	2.0	80	3ah	$76^{b,c}$
8	1a	Ph	2i	Me	2.0	80	3ai	$95^{b,c}$
9	1a	Ph	2j	n-Bu	3.0	100	3aj	$49^{b,d}$
10	1b	$4\text{-MeC}_6\mathrm{H}_4$	2k	Ph	1.5	50	3bk	98
11	1c	$4\text{-}\mathrm{CF_3C_6H_4}$	2k	Ph	1.5	\mathbf{rt}	3ck	99
12	1d	$4\text{-}MeOC_6H_4$	2k	Ph	1.5	50	3dk	99
13	1e	2-MeC_6H_4	2k	Ph	1.5	50	3ek	97
14	1f	3-thienyl	2k	Ph	2.0	$\mathbf{r}\mathbf{t}$	3fk	99
15	1g	n-Bu	2k	Ph	1.5	50	3gk	98 (78)
16	1g	n-Bu	2i	Me	2.0	80	3gi	$68^{b,c}$ (13)
17	1h	$n ext{-}\!\operatorname{Pr}$	2k	Ph	1.5	$\mathbf{r}\mathbf{t}$	3hk	88 (79)
18	1i	<i>i</i> -Pr	2k	Ph	1.5	$\mathbf{r}\mathbf{t}$	3ik	92 (85)
19	1j	cyclopropyl	2k	Ph	1.5	80	3jk	$99^{b,e}$ (76)
20	1k	H	2k	Ph	2.0	100	3kk	$55^{b,f}\left(70\right)$

^a Isolated yield (stereoisomer ratio = >20:1) unless otherwise noted. The yield using the Rh(I) catalyst was in parenthesis; see Supporting Information for details. ^b 1,4-Dioxane was used. ^c 3 h. ^d Pd₂(dba)₃·CHCl₃ (5 mol % of Pd) and P(2-furyl)₃ (10 mol %) were used. ^e 2 h. ^f E/Z = 15:1~20:1.

heteroaryl- and alkenylboronic acids **2e**–**2g** reacted with **1a** to give the corresponding 3-alkylideneoxindoles **3ab**–**3ag** stereoselectively in yields ranging from 87% to 99% (entries 1–6). In contrast to the rhodium system with which only an sp² carbon on boron could be introduced efficiently, even

4888 Org. Lett., Vol. 10, No. 21, 2008

⁽⁶⁾ The ratio of stereoisomers was determined by 1 H NMR. The Z configuration of the exocyclic double bond of **3aa** was assigned by an NOE study

^{(7) (}a) Miyaura, N. In *Metal-Catalyzed Cross-Coupling Reaction*; Diederich, F., de Meijere, A., Eds.; Wiley-VCH: New York, 2004; Chapter 2. (b) Bellina, F.; Carpita, A.; Rossi, R. *Synthesis* **2004**, *15*, 2419.

⁽⁸⁾ For a Pd(II)-catalyzed addition reaction of arylboronic acids, see: (a) Nishikata, T.; Yamamoto, Y.; Miyaura, N. *Angew. Chem., Int. Ed.* **2003**, 42, 2768. (b) Lautens, M.; Dockendorff, C. *Org. Lett.* **2003**, *5*, 3695.

⁽⁹⁾ For a Pd(II)-catalyzed cyclization reaction of alkynones with arylboronic acids, see: (a) Song, J.; Shen, Q.; Xu, F.; Lu, X. *Org. Lett.* **2007**, *9*, 2947. (b) Tsukamoto, H.; Kondo, Y. *Org. Lett.* **2007**, *9*, 4227. (c) Yang, M.; Zhang, X.; Lu, X. *Org. Lett.* **2007**, *9*, 5131.

⁽¹⁰⁾ Tsukamoto, H.; Suzuki, T.; Uchiyama, T.; Kondo, Y. Tetrahedron Lett. 2008, 49, 4174.

alkylboronic acids 2h-2j participated in the reaction with 1a (entries 7-9). A wide range of aryl groups 1b-1e and a heteroaryl group 1f proved to be suitable as the substituents at the alkyne termini of 1 (entries 10-14). With primary and secondary alkyl-substituted substrates 1g-1j, the palladium(0)-catalyzed reaction gave higher yields than the rhodium(I)-catalyzed reaction (entries 15-19). However, terminal alkyne 1k, which was an appropriate substrate for the rhodium system, required heating at 100 °C using the current conditions and was accompanied by isomerization of product 3kk to the thermally stable (E)-isomer (entry 20). 12

The results in Table 2 show that a variety of functional groups including chloride, ether, and ester are tolerated on the aryl group of 1. The palladium system gave consistently better yields (over 90% yield) than the rhodium system.

Table 2. Reaction of Functionalized Aryl Isocyanates 1 with 2k

entry	1	\mathbb{R}^3	3	yield (%)a
1	11	Cl	3lk	92 (76)
2	1m	OMe	3mk	97 (75)
3	1n	CO ₂ Et	3nk	98 (80)
4	CI	NCO 10	CI NH 30k	Ph =O 99 (89)

^a Isolated yield (stereoisomer ratio = >20:1) unless otherwise noted. The yield using the Rh(I) catalyst was in parenthesis; see Supporting Information for details.

We next examined the alkynylative cyclization reaction using alkynylboronates 13 and P(2-furyl) $_3$ as the phosphine ligand, 14,15 with the results being listed in Table 3. Treatment

(12) Villemin, D.; Martin, B. Synth. Commun. 1998, 28, 3201.

Table 3. Cyclization Reaction of 1a with Alkynylboronates 2

entry	2	\mathbb{R}^2	$t\ (^{\circ}\mathrm{C})$	3	yield $(\%)^a$	$(Z/E)^b$
1	21	Ph	50	3al	76	(92:8)
2	2m	TMS	50	3am	61	(89:11)
3	2n	$n ext{-}\!\operatorname{Pr}$	\mathbf{rt}	3an	48	(91:9)

 a Isolated yield. b The ratio of stereoisomers was determined by 1 H NMR. pin = pinacolato.

of phenyl-substituted alkyne 1a with alkynylboronate 2l in the presence of $Pd_2(dba)_3$ -CHCl₃ and P(2-furyl)₃ afforded the desired oxindole 3al in 76% yield as a mixture of stereoisomers¹⁶ (Z/E = 92:8, entry 1). Alkynylboronates $2m^{17}$ and 2n bearing trimethylsilyl and n-propyl groups also reacted with 1a to produce the Z-isomers preferentially (entries 2 and 3). Yamamoto and co-workers reported a palladium-catalyzed cyclization reaction of 2-(alkynyl)aryl isocyanates with terminal alkynes, which afforded the corresponding alkynylated 3-alkylideneoxindoles. However, phenyl-substituted alkyne 1a was an inappropriate substrate, giving a complex mixture of unidentified products. Therefore, the present reaction provides a complementary alkynylative approach to the 3-alkylideneoxindoles.

In summary, an efficient cyclization reaction of 2-(alkynyl)aryl isocyanates with organoboron reagents has been developed using a palladium(0) catalyst. The palladium system shows a remarkably broad substrate scope and also achieves the stereoselective incorporation of various substituents on the exocyclic double bond of 3-alkylideneoxindoles.

Acknowledgment. This work was supported in part by the Mizuho Foundation for the Promotion of Sciences and the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant-in-Aids for Scientific Research on Priority Areas 18032040 and Young Scientists (B) 20750078).

Supporting Information Available: Experimental details and spectral data for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL801844W

Org. Lett., Vol. 10, No. 21, 2008 4889

⁽¹¹⁾ At this time, it is not possible to rule out a mechanism involving sequential carbopalladation steps, initially operating on the alkyne moiety and next on the isocyanate moiety in a stepwise manner. For oxidative addition of arylboronic acids to Pd(0), see: (a) Cho, C. S.; Uemura, S. J. Organomet. Chem. 1994, 465, 85. (b) Moreno-Mañas, M.; Pérez, M.; Pleixats, R. J. Org. Chem. 1996, 61, 2346.

⁽¹³⁾ For a Pd(0)-catalyzed alkynylation reaction of aryl halides with alkynylboronates or alkynylborates, see: (a) Castanet, A.-S.; Colobert, F.; Schlama, T. *Org. Lett.* **2000**, 2, 3559. (b) Torres, G. H.; Choppin, S.; Colobert, F. *Eur. J. Org. Chem.* **2006**, 1450.

^{(14) (}a) Kagawa, N.; Malerich, J. P.; Rawal, V. H. *Org. Lett.* **2008**, *10*, 2381. For a review of P(2-furyl)₃ as ligand, see: (b) Andersen, N. G.; Keay, B. A. *Chem. Rev.* **2001**, *101*, 997.

⁽¹⁵⁾ Pd(PPh₃)₄ was less effective, and its use under the same reaction conditions gave **3al** in 42% yield (Z/E = 56/44).

⁽¹⁶⁾ As reported in ref 4a, the E/Z isomerization of alkynylated 3-alkylideneoxindoles was caused by the phosphine ligand.

⁽¹⁷⁾ Alkynylboronate 2m was so labile that it was handled in a glovebox.